{"id":55756,"date":"2025-03-08T18:23:30","date_gmt":"2025-03-08T10:23:30","guid":{"rendered":"http:\/\/www.newtopchem.com\/archives\/55756"},"modified":"2025-03-08T18:23:30","modified_gmt":"2025-03-08T10:23:30","slug":"flame-retardant-properties-of-bis3-dimethylaminopropylaminoisopropyl-alcohol-zr-50-in-refractory-materials","status":"publish","type":"post","link":"http:\/\/www.newtopchem.com\/archives\/55756","title":{"rendered":"Flame retardant properties of bis(3-dimethylaminopropyl)aminoisopropyl alcohol ZR-50 in refractory materials","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
Refractories have excellent stability and durability in high temperature environments and are widely used in metallurgy, building materials, chemicals and other fields. However, with the advancement of industrial technology, the performance requirements for refractory materials are becoming increasingly high, especially in terms of flame retardant properties. As a new flame retardant, bis(3-diylpropyl)aminoisopropyl alcohol ZR-50 has gradually become a research hotspot in the field of refractory materials due to its unique chemical structure and excellent flame retardant properties. This article will introduce in detail the chemical characteristics, flame retardant mechanism, product parameters and their application in refractory materials. <\/p>\n
The chemical name of ZR-50 is bis(3-diylpropyl)aminoisopropanol, and its molecular formula is C13H30N2O. The molecular structure contains two dipropyl groups and one isopropyl alcohol group, which imparts excellent flame retardant properties and chemical stability to ZR-50. <\/p>\n
Properties<\/th>\n | value<\/th>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecular Weight<\/td>\n | 230.39 g\/mol<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance<\/td>\n | Colorless to light yellow liquid<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
Density<\/td>\n | 0.92 g\/cm\u00b3<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point<\/td>\n | 250\u00b0C<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
Flashpoint<\/td>\n | 120\u00b0C<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
Solution<\/td>\n | Easy soluble in water and organic solvents<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n2.3 Chemical Properties<\/h3>\nZR-50 has good thermal and chemical stability, and can keep its chemical structure unchanged under high temperature environments. In addition, ZR-50 also has good dispersion and compatibility, can be compatible with a variety of refractory material substrates, and improve the overall performance of the material. <\/p>\n 3. Flame retardant mechanism of ZR-50<\/h2>\n |
Performance<\/th>\n | ZR-50 not added<\/th>\n | Add ZR-50<\/th>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fuel rate (mm\/min)<\/td>\n | 2.5<\/td>\n | 1.2<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||
Fire resistance limit (min)<\/td>\n | 60<\/td>\n | 120<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||
Thermal Stability (\u00b0C)<\/td>\n | 1200<\/td>\n | 1400<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n4.2 Refractory coating<\/h3>\nThe addition of ZR-50 to the refractory coating as a flame retardant can significantly improve the flame retardant and high temperature resistance of the coating. By adding ZR-50, the combustion rate of the refractory coating is significantly reduced and the refractory limit is significantly improved. <\/p>\n
|