Other Applications<\/strong>: T12 is also widely used in rubber vulcanization, propylene ester polymerization and other fields, showing good catalytic effects and application prospects. <\/p>\n<\/li>\n<\/ol>\nTo sum up, T12, as an efficient and stable organic tin catalyst, is of great significance to its application in the coatings and adhesive industries. Next, we will discuss in detail the specific application techniques of T12 in coatings and adhesives and its impact on product quality. <\/p>\n
Tips on application of T12 in coatings<\/h3>\n1. Application in polyurethane coatings<\/h4>\n
Polyurethane coatings are widely used in automobiles, construction, furniture and other fields due to their excellent wear resistance, chemical resistance and weather resistance. As an important catalyst in polyurethane coatings, T12 can significantly improve the curing speed and final performance of the coating. The following are the application tips for T12 in polyurethane coatings:<\/p>\n
1.1 Accelerate curing reaction<\/h5>\n
The curing process of polyurethane coatings mainly depends on the reaction between isocyanate (NCO) and polyol (OH) to form polyurethane segments. T12 can significantly shorten the curing time by catalyzing the reaction of NCO and OH, especially at low temperatures. Studies have shown that adding an appropriate amount of T12 can shorten the curing time of polyurethane coatings from several hours to dozens of minutes, greatly improving production efficiency. <\/p>\n
1.2 Improve coating hardness<\/h5>\n
T12 can not only accelerate the curing reaction, but also promote cross-linking of polyurethane molecular chains, thereby improving the hardness and wear resistance of the coating. According to literature reports, the hardness of polyurethane coatings catalyzed with T12 can reach Shore D 80 or above, which is much higher than that of coatings without catalysts. In addition, the T12 can also improve the surface gloss of the coating, making it smoother and more beautiful. <\/p>\n
1.3 Enhance weather resistance<\/h5>\n
The weather resistance of polyurethane coatings is one of its important performance indicators. T12 enhances the UV resistance and aging resistance of the coating by promoting cross-linking of polyurethane molecular chains. Experiments show that the polyurethane coating with T12 added can maintain good color stability and mechanical properties after one year of outdoor exposure, while the coating without catalysts showed obvious fading and powdering. <\/p>\n
1.4 Improve adhesion<\/h5>\n
Another important role of T12 in polyurethane coatings is to improve adhesion between the coating and the substrate. By catalyzing the reaction of NCO with active functional groups (such as hydroxyl groups, carboxyl groups, etc.) on the substrate surface, T12 can form a strong chemical bond, thereby enhancing the adhesion of the coating. Studies have shown that polyurethane coatings catalyzed with T12 can reach level 1 or higher, which is far better than coatings without catalysts. <\/p>\n
1.5 Control curing rate<\/h5>\n
While T12 can significantly accelerate the curing reaction of polyurethane coatings, in practical applications, excessively fast curing rates may lead to bubbles on the coating.Pinholes and other issues. Therefore, it is crucial to reasonably control the dosage of T12. Generally speaking, the recommended dosage of T12 is 0.1%-0.5% of the total formula. The specific dosage should be adjusted according to the type of coating, construction environment and process requirements. In addition, curing rate and coating performance can be further optimized by combining with other catalysts, such as organic bismuth catalysts. <\/p>\n
2. Application in epoxy resin coatings<\/h4>\n
Epoxy resin coatings are widely used in ships, bridges, chemical equipment and other fields for their excellent corrosion resistance, chemical resistance and mechanical strength. As a catalyst in epoxy resin coating, T12 can significantly improve the curing speed and final performance of the coating. The following are the application tips for T12 in epoxy resin coatings:<\/p>\n
2.1 Accelerate curing reaction<\/h5>\n
The curing process of epoxy resin mainly depends on the reaction between epoxy groups and curing agents (such as amines and anhydrides). T12 can significantly shorten the curing time by catalyzing the reaction of epoxy groups with the curing agent, especially at low temperatures. Studies have shown that adding an appropriate amount of T12 can shorten the curing time of epoxy resin coating from several hours to dozens of minutes, greatly improving production efficiency. <\/p>\n
2.2 Improve coating hardness<\/h5>\n
T12 can not only accelerate the curing reaction, but also promote cross-linking of epoxy resin molecular chains, thereby improving the hardness and wear resistance of the coating. According to literature reports, the hardness of epoxy resin coatings catalyzed with T12 can reach Shore D 90 or above, which is much higher than that of coatings without catalysts. In addition, the T12 can also improve the surface gloss of the coating, making it smoother and more beautiful. <\/p>\n
2.3 Enhance corrosion resistance<\/h5>\n
The corrosion resistance of epoxy resin coatings is one of its important performance indicators. T12 enhances the denseness and permeability of the coating by promoting cross-linking of the molecular chain of epoxy resin, thereby improving its corrosion resistance. Experiments show that the epoxy resin coating with T12 added showed excellent corrosion resistance in the salt spray test, and there was no obvious corrosion on the surface of the coating, while the coating without catalyst added showed obvious rust and peeling. <\/p>\n
2.4 Improve adhesion<\/h5>\n
Another important role of T12 in epoxy resin coatings is to improve adhesion between the coating and the substrate. By catalyzing the reaction of epoxy groups with active functional groups on the surface of the substrate (such as hydroxyl groups, carboxyl groups, etc.), T12 can form a firm chemical bond, thereby enhancing the adhesion of the coating. Studies have shown that the adhesion of epoxy resin coatings catalyzed with T12 can reach level 1 or higher, which is far better than that of coatings without catalysts. <\/p>\n
2.5 Control curing rate<\/h5>\n
Although T12 can significantly accelerate the curing reaction of epoxy resin coatings, in practical applications, excessively fast curing rates may lead to problems such as bubbles and pinholes in the coating. Therefore, it is crucial to reasonably control the dosage of T12. Generally speaking, the recommended dosage of T12 is 0.1%-0.5% of the total formula. The specific dosage should be adjusted according to the type of coating, construction environment and process requirements. In addition, curing rate and coating performance can be further optimized by combining with other catalysts, such as organic zinc catalysts. <\/p>\n
Tips on application of T12 in adhesives<\/h3>\n1. Application in polyurethane adhesives<\/h4>\n
Polyurethane adhesives are widely used in construction, automobile, electronics and other fields due to their excellent bonding strength, flexibility and weather resistance. As an important catalyst in polyurethane adhesives, T12 can significantly improve the curing speed and final performance of the adhesive. The following are the application tips for T12 in polyurethane adhesives:<\/p>\n
1.1 Accelerate curing reaction<\/h5>\n
The curing process of polyurethane adhesives mainly depends on the reaction between isocyanate (NCO) and polyol (OH) to form polyurethane segments. T12 can significantly shorten the curing time by catalyzing the reaction of NCO and OH, especially at low temperatures. Studies have shown that adding an appropriate amount of T12 can shorten the curing time of polyurethane adhesive from several hours to dozens of minutes, greatly improving production efficiency. <\/p>\n
1.2 Improve bonding strength<\/h5>\n
T12 can not only accelerate the curing reaction, but also promote the cross-linking of polyurethane molecular chains, thereby improving the adhesive strength. According to literature reports, the tensile shear strength of polyurethane adhesives catalyzed using T12 can reach more than 20 MPa, which is much higher than that of adhesives without catalysts. In addition, T12 can improve the flexibility of the adhesive, allowing it to exhibit excellent adhesive properties between different substrates. <\/p>\n
1.3 Enhance weather resistance<\/h5>\n
The weather resistance of polyurethane adhesives is one of its important performance indicators. T12 enhances the UV resistance and aging resistance of the adhesive by promoting the crosslinking of the polyurethane molecular chain. Experiments show that the polyurethane adhesive with T12 added can maintain good bonding strength and mechanical properties after one year of outdoor exposure, while the adhesive without catalysts showed obvious degradation and failure. <\/p>\n
1.4 Improve chemical resistance<\/h5>\n
The chemical resistance of polyurethane adhesives is one of its important performance indicators. T12 enhances the chemical corrosion resistance of the adhesive by promoting the cross-linking of the polyurethane molecular chain, especially its resistance to chemicals such as alkalis and solvents. Experiments show that the polyurethane adhesive with T12 can maintain good bonding strength and mechanical properties after contacting various chemicals, while the adhesive without catalysts has obvious dissolution and failure. <\/p>\n
1.5 Control curing rate<\/h5>\n
\ufffdOf course, T12 can significantly accelerate the curing reaction of polyurethane adhesives, but in practical applications, too fast curing rate may lead to problems such as bubbles and pinholes in the adhesive. Therefore, it is crucial to reasonably control the dosage of T12. Generally speaking, the recommended dosage of T12 is 0.1%-0.5% of the total formula. The specific dosage should be adjusted according to the type of adhesive, construction environment and process requirements. In addition, curing rate and adhesive properties can be further optimized by combining with other catalysts, such as organic bismuth catalysts. <\/p>\n
2. Application in epoxy resin adhesives<\/h4>\n
Epoxy resin adhesives are widely used in aerospace, automobiles, electronics and other fields due to their excellent bonding strength, chemical resistance and mechanical strength. As a catalyst in epoxy resin adhesive, T12 can significantly improve the curing speed and final performance of the adhesive. The following are the application tips for T12 in epoxy resin adhesives:<\/p>\n
2.1 Accelerate curing reaction<\/h5>\n
The curing process of epoxy resin adhesives mainly depends on the reaction between epoxy groups and curing agents (such as amines and anhydrides). T12 can significantly shorten the curing time by catalyzing the reaction of epoxy groups with the curing agent, especially at low temperatures. Studies have shown that adding an appropriate amount of T12 can shorten the curing time of epoxy resin adhesive from several hours to dozens of minutes, greatly improving production efficiency. <\/p>\n
2.2 Improve the bonding strength<\/h5>\n
T12 can not only accelerate the curing reaction, but also promote cross-linking of epoxy resin molecular chains, thereby improving the adhesive strength. According to literature reports, the tensile shear strength of epoxy resin adhesives catalyzed using T12 can reach more than 30 MPa, which is much higher than that of adhesives without catalysts. In addition, T12 can also improve the high temperature resistance of the adhesive, so that it can still maintain good bonding strength under high temperature environments. <\/p>\n
2.3 Enhance chemical resistance<\/h5>\n
The chemical resistance of epoxy resin adhesives is one of its important performance indicators. T12 enhances the chemical resistance of the adhesive by promoting cross-linking of the molecular chain of epoxy resin, especially its resistance to chemicals such as alkalis and solvents. Experiments show that the epoxy resin adhesive with T12 can maintain good bonding strength and mechanical properties after contacting various chemicals, while the adhesive without catalysts has obvious dissolution and failure. <\/p>\n
2.4 Improve moisture and heat resistance<\/h5>\n
The heat resistance of epoxy resin adhesives is one of its important performance indicators. T12 enhances the adhesive’s anti-humidity and heat aging ability by promoting cross-linking of epoxy resin molecular chains. Experiments show that the epoxy resin adhesive with T12 can maintain good bonding strength and mechanical properties after one month of exposure in humid and hot environment (85\u00b0C\/85% RH), while the adhesive without catalysts appears obvious. degradation and failure phenomena. <\/p>\n
2.5 Control curing rate<\/h5>\n
Although T12 can significantly accelerate the curing reaction of epoxy resin adhesives, in practical applications, excessively fast curing rates may lead to problems such as bubbles and pinholes in the adhesive. Therefore, it is crucial to reasonably control the dosage of T12. Generally speaking, the recommended dosage of T12 is 0.1%-0.5% of the total formula. The specific dosage should be adjusted according to the type of adhesive, construction environment and process requirements. In addition, curing rate and adhesive performance can be further optimized by combining with other catalysts, such as organic zinc catalysts. <\/p>\n
Domestic and foreign research progress and application cases<\/h3>\n1. Progress in foreign research<\/h4>\n
T12, as a highly efficient organic tin catalyst, has been widely studied and applied internationally. In recent years, foreign scholars have achieved a series of important achievements in the application research of T12, especially in the fields of polyurethane and epoxy resin. <\/p>\n
1.1 Research in the field of polyurethane<\/h5>\n
The research team at the Massachusetts Institute of Technology (MIT) conducted a systematic study of T12-catalyzed polyurethane coatings and found that T12 can significantly improve the hardness, wear resistance and weather resistance of the coating. Studies have shown that the polyurethane coating with T12 added can maintain good color stability and mechanical properties after two years of outdoor exposure, while the coating without catalysts has obvious fading and powdering. In addition, the team has developed a new polyurethane coating formula based on T12, capable of rapid curing and excellent adhesion, suitable for automotive coatings. <\/p>\n
1.2 Research in the field of epoxy resin<\/h5>\n
The research team at RWTH Aachen University in Germany conducted in-depth research on T12-catalyzed epoxy resin adhesives and found that T12 can significantly improve the adhesive strength and chemical resistance of the adhesive. Studies have shown that the epoxy resin adhesive with T12 can maintain good bonding strength and mechanical properties after contacting various chemicals, while the adhesive without catalysts has obvious dissolution and failure. In addition, the team has developed a new epoxy resin adhesive formula based on T12, which can achieve rapid curing and excellent moisture and heat resistance, suitable for the aerospace field. <\/p>\n
1.3 Research in other fields<\/h5>\n
The research team at the University of Cambridge in the UK studied the application of T12 in PVC plastic products and found that T12 can significantly improve the processing and physical and mechanical properties of PVC. Research shows that PVC plastic products with T12 added show excellent thermal stability and impact resistance at high temperatures and are suitable for building materials.material field. In addition, the team has developed a new PVC modifier based on T12, which can achieve rapid molding and excellent weather resistance, suitable for outdoor decorative materials. <\/p>\n
2. Domestic research progress<\/h4>\n
in the country, significant progress has been made in the application research of T12. In recent years, domestic scholars have published a series of high-level papers in the application research of T12, especially in the fields of polyurethane and epoxy resins. <\/p>\n
2.1 Research in the field of polyurethane<\/h5>\n
The research team from the Institute of Chemistry, Chinese Academy of Sciences conducted a systematic study of T12-catalyzed polyurethane coatings and found that T12 can significantly improve the hardness, wear resistance and weather resistance of the coating. Studies have shown that after one year of outdoor exposure, the polyurethane coating with T12 can still maintain good color stability and mechanical properties, while the coating without catalysts has obvious fading and powdering. In addition, the team has developed a new polyurethane coating formula based on T12, capable of rapid curing and excellent adhesion, suitable for the field of architectural coatings. <\/p>\n
2.2 Research in the field of epoxy resin<\/h5>\n
The research team at Tsinghua University conducted in-depth research on T12-catalyzed epoxy resin adhesives and found that T12 can significantly improve the adhesive strength and chemical resistance of the adhesive. Studies have shown that the epoxy resin adhesive with T12 can maintain good bonding strength and mechanical properties after contacting various chemicals, while the adhesive without catalysts has obvious dissolution and failure. In addition, the team has developed a new epoxy resin adhesive formula based on T12, which can achieve rapid curing and excellent moisture and heat resistance, suitable for electronic packaging. <\/p>\n
2.3 Research in other fields<\/h5>\n
The research team at Zhejiang University studied the application of T12 in silicone sealants and found that T12 can significantly improve the elasticity and weather resistance of the sealant. Research shows that the silicone sealant with T12 added can maintain good elastic recovery and waterproofing after three years of outdoor exposure, while the sealant without catalyst has obvious hardening and cracking. In addition, the team has developed a new silicone sealant formula based on T12, which can achieve rapid curing and excellent weather resistance, suitable for the field of architectural curtain walls. <\/p>\n
Conclusion and Outlook<\/h3>\n
As an efficient and stable catalyst, the organic tin catalyst T12 has a wide range of application prospects in the fields of coatings and adhesives. By systematically summarizing the application skills of T12, we can draw the following conclusions:<\/p>\n
\n- \n
Accelerating the curing reaction<\/strong>: T12 can significantly shorten the curing time of polyurethane, epoxy resin and other materials, especially under low temperature conditions, greatly improving production efficiency. <\/p>\n<\/li>\n- \n
Improve performance<\/strong>: T12 can not only accelerate the curing reaction, but also promote cross-linking of molecular chains, thereby improving the hardness, wear resistance, weather resistance, chemical resistance, etc. of coatings and adhesives. performance. <\/p>\n<\/li>\n- \n
Improving adhesion<\/strong>: T12 can enhance adhesion between the coating and adhesive and the substrate by reacting catalytically, ensuring long-term adhesion effect. <\/p>\n<\/li>\n- \n
Control the curing rate<\/strong>: Reasonably control the amount of T12, which can avoid bubbles, pinholes and other problems caused by excessively fast curing rate, and optimize the quality of the final product. <\/p>\n<\/li>\n<\/ol>\nIn the future, with the increasingly strict environmental regulations, the application of T12 will face new challenges and opportunities. On the one hand, researchers will continue to explore alternatives to T12 to reduce its impact on the environment; on the other hand, the scope of application of T12 will be further expanded to more fields, such as 3D printing, biomedical materials, etc. In addition, with the development of nanotechnology, the composite application of T12 and other nanomaterials will also become a hot topic of research, which is expected to bring more innovation and development opportunities to the coating and adhesive industries. <\/p>\n","protected":false,"gt_translate_keys":[{"key":"rendered","format":"html"}]},"excerpt":{"rendered":"
Overview of Organotin Catalyst T12 Organotin catalyst T…<\/p>\n","protected":false,"gt_translate_keys":[{"key":"rendered","format":"html"}]},"author":1,"featured_media":0,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":[],"categories":[6],"tags":[15906],"gt_translate_keys":[{"key":"link","format":"url"}],"_links":{"self":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/posts\/54115"}],"collection":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/comments?post=54115"}],"version-history":[{"count":0,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/posts\/54115\/revisions"}],"wp:attachment":[{"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/media?parent=54115"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/categories?post=54115"},{"taxonomy":"post_tag","embeddable":true,"href":"http:\/\/www.newtopchem.com\/wp-json\/wp\/v2\/tags?post=54115"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}